70  cChapter 16: Integrals and Vector Fields

ork, Circulation, and Fluﬁ( in the Plane
. Work Find the work done by the force F = xyi + (y = x)j
over the straight line from (1, 1) to (2, 3).

J. Work Find the work done by the gradient of f(x, y) = (x + )?
counterclockwise around the circle x2 + 32 = 4 from (2, 0) to
itself.

). Circulation and flux Find the circulation and flux of the fields

F, = xi + yj and F, = —yi + xj

around and across each of the following curves.
a. The circle r(f) = (cos i + (sinf)j, 0 =1t = 2
b. The ellipse r(z) = (cos )i + @sinf)j, 0 =¢=2r

. Flux across a circle Find the flux of the fields .

F| = 2xi — 3yj B, =2xi + (x ~ y)j
across the circle
r(f) = (acos Ni + (asin 1, 0=<1t=<2m

Exercises 3134, find the circulation and flux of the field F around

d across the closed semicircular path that consists of the semicircu-

arch 1(f) = (@acos i + (asin$)j, 0 <t =< 7, followed by the

e segment 1,(f) = fi,~a <t < a.

32. F = x4 + y?j

34. F =~y + 5%

. Flow integrals Find the flow of the velocity field F =
(x + »i — (£ + »?)j along each of the following paths from
(1, 0) to (—1, 0) in the xy-plane.

a. The upper half of the circle ¥ + y2 = 1

b. The line segment from (1, 0) to (—1, 0)

¢. ‘The line segment from (1, 0) to (0, —1) followed by the line
segment from (0, ~1) to (—1, 0)

and

» F=xi+yj
. F=—yi+xj

. Flux across a triangle Find the flux of the field F in Exercise
35 outward across the triangle with vertices (1, 0), (0, 1), (-1, 0).

Find the flow of the velocity field F = y% + 2xyj along each of
the following paths from (0, 0) to (2, 4).

a. y b. y
@4 @4
yl= 9 ):, =52
l I
! i
. —L 1,
(0,0 2 ©,0) 2

c. U.se any path from (0, 0) to (2, 4) different from parts (a)
and (b). .

Find the circulation of the field F = yi + (x + 2y)j around each

of the following closed paths.

a. ¥y

L1 )

(-1,-1) (1, -1

b. (&

ar

b:

Flow |

¢. Use any closed path different from parts (a) and (b). o Bxe

Vector Fields in the Plane egion

39. Spinfield Draw the spin field increa

y ' 4. F

F=- i+ = j ]

Va2 + y? Vi + yZJ ;

(see Figure 16.12) along with its horizontal and vertical compo- . rt
nents at a representative assortment of points on the circle

2 2 . F

x*+ y* =4,
40. Radial field Draw the radial field T
. F

41.

42,

43,

44.

45,

46.

F=uxi+yj
(see Figure 16.11) along with its horizontal and vertical compo-
nents at a representative assortment of points on the circle
x4+ =1
A field of tangent vectors

a. Find afield G = P(x, »)i + Q(x, y)j in the xy-plane with the
property that at any point (g, b) # (0, 0), G is a vector of
magnitude Va? + b? tangent to the circle x? + y? =
a® + b* and pointing in the counterclockwise direction. (The
field is undefined at (0, 0).)

b. How is G related to the spin field F in Figure 16.12?
A field of tangent vectors

a. Find afield G = P(x, y)i + Q(x, y)j in the xy-plane with the
property that at any point (g, b) # (0, 0), G is a unit vector
tangent to the circle x* + ¥ = 42 + b? and pointing in the
clockwise direction,

b. How is G related to the spin field F in Figure 16.127

Unit vectors pointing toward the origin Find a field F =
M(x, )i + N(x, y)j in the xy-plane with the property that at each
point (x, y) # (0, 0), ¥ is a unit vector pointing toward the ori-
gin. (The field is undefined at (0, 0).)
Two “central” fields Find a field F = M(x, )i + N(x, y)j in
the xy-plane with the property that at each point (x, y) # (0, 0), F
points toward the origin and |F| is (a) the distance from (x, ) to
the origin, (b) inversely proportional to the distance from (¥, y) to
the origin. (The field is undefined at (0, 0).)

Work and area  Suppose that £(¢) is differentiable and positive
fora=t=b LetCbethepathr(t) =i + f@)j, a =t = b,
and F = yi. Is there any relation between the value of the work

integral
/ Fe-dr
c

and the area of the region bounded by the t-axis, the graph of f,
and the lines # = g and ¢ = b? Give reasons for your answer.

Work done by a radial force with constant magnitude A
particle moves along the smooth curve y = f(x) from (a, f(@)) t0
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(b, f(b)). The force moving the particle has constant magnitude k
and always points away from the origin. Show that the work done
by the force is

/ F-Tds = k[ (5% + G2 — (2 + (f@)P)2].
[of

Flow Integrals in Space

In Exercises 4750, F is the velocity field of a fluid flowing through a
region in space. Find the flow along the given curve in the direction of
increasing ¢.

47. F = —4xyi + 8yj + 2k

) =rn+j+k 0=<r=2?
48. F = x% + yzj + y%k

) =3+ 4k, 0=sr=1
49. F = (x — i + xk

r(®) = (cos Hi + (sin Dk,
50. F=—yi +xj + 2k

r() = (—2cos Hi + (2sin Nj + 2tk, . 0=:t=< 2y

51. Circulation Find the circulation of F = 2xj + 2zj + ka
around the closed path consisting of the following three curves
traversed in the direction of increasing z.

O=t=srx

Ci r(® = (cosHi + (sin)j +rk, 0=<¢= /2
G =+ (@/)A -k, O0=t=<1
G or(@®) =1+ (1 — )],

O0=sr=1

z T
g

X

. Zero circulation Let C be the ellipse in which the plane
2x + 3y ~ z = 0 meets the cylinder x2 + y2 = 12, Show, with-
out evaluating either line integral directly, that the circulation of

the field F = xi + yj + zk around C in either direction is zero.

53. Flow along a curve The field F = xyi + yj — yzk is the

velocity field of a flow in space. Find the flow from ©,0,0) to

(1, 1, 1) along the curve of intersection of the cylinder y = x? and
the plane z = x. (Hint: Use t = x as the parameter.)

54. Flow of a gradient field Find the flow of the field F = V (xy%3):

a. Once around the curve C in Exercise 52, clockwise as viewed
from above

b. Along the line segment from (1,1, Dto (2,1,-1).

COMPUTER EXPLORATIONS
In Exercises 55-60, use a CAS to perform the following steps for
finding the work done by force F over the given path:

a. Find dr for the path r(®) = g(Hi + h(®)j + k(Ok.
b. Evaluate the force F along the path,

¢. Evaluate / F-dr.
c

55. F = % + 3x(0° + 2)f; r(®) = (2cos Hi + (sin )j,
O0=st=27

56. F = - szi + ']:Tz?j; r() = (cos )i + (sin ),
O=s¢t=qx

57. F = (y + yzcos xy2i + (22 + xz cos xyz)j +
(z + xy cos xy2)k; r(®) = (2cos Hi + (3 sin nj +k,
O0<t=<2r

58. F = 20 — % + z¢k; x(t) = —#i + Vi + 3k,
1=sr=4 '

59. F = 2y + sinx)i + (£ + (1/3)cos y)j + x*k;
r(®) = (sin i + (cos j + (sin 20k, -T2 =t=7/2

60. F = ()i + 329 + 0k; 1) = (cos i + (sin 1 +
2sin’t - Dk, 0=<¢=27

.,1 6.3 Path ’Independence, Conservative Fields, and Potential Functions

A gravitational field G is a vector field that represents the effect of gravity at a point in
space due to the presence of a massive object. The gravitational force on a body of mass m
placed in the field is given by F = mG. Similarly, an electric field E is a vector field in
space that represents the effect of electric forces on a charged particle placed within it. The
force on a body of charge ¢ placed in the field is given by F = ¢E. In gravitational and
electric fields, the amount of work it takes to move a mass or charge from one point to
another depends on the initial and final positions of the object—not on which path is taken
between these positions. In this section we study vector fields with this property and the
calculation of work integrals associated with them.
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EXAMPLE 6 Show that y dx + xdy + 4 dz is exact and evaluate the integral

(23,-1)
/ ydx + xdy + 4 dz
(1,1,1)

over any path from (1, 1, 1) to (2, 3, —1).

Solution Welet M = y,N = x, P = 4 and apply the Test for Exactness:

day oz’ az T oox’ ox ay"
These equalities tell us that y dx + xdy + 4 dz is exact, so
yde + xdy + 4dz = df

for some function f, and the integral’s value is f(2, 3,\—1) - F(1, 1, 1).
We find f up to a constant by integrating the equations

0 1

of of of
FRi ) Eia Erial )
From the first equation we get
f&y.2) = xy + g0, 2).
The second equation tells us that
d ) S
5§=x+a—§-=x, or 5y§=0.
Hence, g is a function of z alone, and
fx32) = xy + k().
The third of Equations (4) tells us that
o _ dh _ -
az——0+dz~4, or h(z) = 4z + C.

Therefore,
ey, ) =xy + 4z + C.

The value of the line integral is independent of the path taken from (1, 1, 1) to (2, 3, = 1),
and equals

fQ,3,-D-f1,1,D)=2+C - S +C =-3.

Testing for Conservative Fields A 8. F=(+2i+@+2j+@x+yk

Which fields in Exercises 1-6 are conservative, and which are not? 9. F = &% + xj + 2xk)

L F = yi + xzj + xyk 10. F = (ysin )i + (xsinz)j + (xycos z)k

2. F = (ysing)i + (xsinz)j + (xycos 2k 1L F = (Inx + sec’(x + y))i +

3. F=yi+ (x+2j—yk ( ) y ) z

+y+ i+ k
4. F = __yi + xj sec (x y) y2 + ZZ ) yz + 22
S.F=(z+yi+zj+ @+ ok
mraroT 12.F=—Lz—~i+<—i5—+——-z——j+

6. F = (¢cos yi — (&Fsiny)j + zk 1+ x%y? 1+ %2y /1 — 3272 -

Finding Potential Functions <w__}j____ + l)k
In Exercises 712, find a potential function f for the field F. \/fT;fz_z

7. F = 2xi + 3yj + 4zk




ExaCi Differential Forms
Ill Exercises 1317, show that the differential forms in the integrals

are exact. Then evaluate the integrals.

239
13/ 2xdx + 2ydy + 2zdz
©00)

650
14/ yzdx -+ xzdy + xydz
L JLLD

(1,23 :
1. / 2xydx + (22 — 22) dy — 2yzdz
S0 '

63D 4
16. / 2xdx — y*dy — dz
: (0,0,0) 1+ 7

V ©LY
17. / sinycosxdx + cosysinxdy + dz
(1,0,0)

Finding Potential Functions to Evaluate Line Integrals

Although they are not defined on all of space RS, the fields associated
with Exercises 18-22 are conservative. Find a potential function for
each field and evaluate the integrals as in Example 6.

(L7/2.2) 1 1
18./ : 200syd.x+<5;-—2xsiny>dy+zdz
021

123 2
19, / 332 dx + gy—dy +2zInydz
(L,1,1)

‘ L 2
’0._/ (2x1ny-—yz)dx+(—-—xz)dy—xydz
12,0

2,2, 2)1 1
Zl./ ydx+<——£>dy——dz
1,10 ¥

g / 222 oxdx + 2ydy + 2z dz
-1,-1,-1)

¥+ 3+ 72

Applications and Examples
23. Revisiting Example 6 Evaluate the integral

23,~1)
/ ydx +xdy + 4dz
(LL1)

from Example 6 by finding parametric equations for the line seg-

ment from (1, 1, 1) to (2, 3, —~1) and evaluating the line integral

of F = yi + xj + 4k along the segment. Since F is conservative,
. the integral is independent of the path.

24. Evaluate
/xzdx + yzdy + (¥2/2) dz
¢

along the line segment C joining (0, 0, 0) to (0, 3, 4). i

Independence of path Show that the values of the integrals in
Exercises 25 and 26 do not depend on the path taken from'A to B.
Byax + ydy + zdz

A Vxr+y 42

In Bxercises 27 and 28, find a potential function for F.

2x, 1 — X%\,
27. F = ")',“l +( yz ).]7 {(x’}’)Iy > 0}

B
25, / 22dx + 2ydy + 2xzdz 26,
A

28. F = (Flny)i + (ex + sin z),] + (ycos 2k
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29. Work along different paths Find the work done by F =
(2 + Wi + (9 + x)j + ze’k over the following paths from
(1,0,0)t0 (1,0, 1).

a. Thelinesegmentx = 1,y = 0,0 =z =1

b. The helix r(s) = (cos Hi + (sin Hj + (¢/2m)k, 0 <t < 27

¢. The x—ams from (1, 0, 0) to (0, 0, 0) followed by the parabola
z=x%y = 0from (0,0,0)t0 (1,0, 1)

(1,,0,0

30. Work along different paths Find the work done by F =
&4 + (xze” + zcos y)j + (xye”* + siny)k over the following
paths from (1, 0, 1) to (1, 7/2, 0).

a. Thehnesegmentx——ly—m‘/Zz—l—-t0<t<1

b. The line segment from (1, 0, 1) to the origin followed by the
line segment from the origin to (1, 7/2, 0)

1(0,0,0)

: D

¢. The line segment from (1, 0, 1) to (1, 0, 0), followed by the
x-axis from (1, 0, 0) to the origin, followed by the parabola
y = mx?/2,z = 0 from there to (1, 7/2, 0)

0,1 -~

10,00

= y

“a00 T <1’ > 0)
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31. Evaluating a work integral two ways Let F = V(x%?) and

let C be the path in the xy-plane from (~1, 1) to (1, 1) that con-
sists of the line segment from (~1, 1) to (0, 0) followed by the
line segment from (0,-0) to (1, 1). Evaluate f cF + dr in two ways.

a. Find parametrizations for the segments that make up C and

M.

Gradient of a line integral Suppose that F = V£ is conser-
vative vector field and

[€3'34]
gl y,2) = / F-dr.
0,00

evaluate the integral.
Show that Vg = F.

35. Path of least work You have been asked to find the path along
which a force field F will perform the least work in moving 3
particle between two locations. A quick calculation on your part
shows F to be conservative. How should you respond? Give res.
sons for your answer. .

b. Use f(x,y) = x*y* as a potential function for F.

32. Integral along different paths Evaluate the line integral
f c2xcosydx — x* siny dy along the following paths C in the
xy-plane.

a. The parabola y = (x — 1)2 from (1, 0) to (0, 1)
b. The line segment from (~1, ) to (1, 0)
c. The x-axis from (-1, 0) to (1, 0)
d. The astroid r(f) = (cos® £)i + (sin®1)j, 0 = ¢ < 27, coun-
terclockwise from (1, 0) back to (1, 0)
1 : y

36. A revealing experiment By experiment, you find that a force
field F performs only half as much work in moving an object
along path C; from A to B as it does in moving the object along
path C, from A to B. What can you conclude about F? Give reg.
sons for your answer.

37. Work by a constant force Show that the work done by a cop-
stant force field F = ai + bj + - ck in moving a particle along
any path fromAto Bis W = F - AB.

38. Gravitational field
a. Finda pbtential function for the gravitational field

(0, 1)

1,0

(0’ iil\)

33. a. Exact differential form How are the constants a, b, and ¢
related if the following differential form is exact?

- (ay? + 2czx) dx + y(bx + ) dy + (ay? + cx?) dt
b. Gradient field For what values of b and ¢ will
F = (32 + 2czx)i + y(bx + c2)j + (3% + ok
be a gradient field?

L0
= x

xi +yj+zk

F = —GmM—(x2 I y_—z + 22)3/2_

(G, m, and M are constants).
b. Let P, and P, be points at distance s5; and s, from the origin.

Show that the work done by the gravitational field in part (a)
in moving a particle from P to P, is

1 1
GmM(E - };)

1 6.4 Green’s Theorem in the Plane

If F is a conservative field, then we know F = Vf for a differentiable function f, and we
can calculate the line integral of F over any path C joining point A to B as
f cF+dr = f(B) — f(A). In this section we derive a method for computing a work or flux
integral over a closed curve C in the plane when the field F is not conservative. This
method comes from Green’s Theorem, which allows us to convert the line integral into a
double integral over the region enclosed by C.

The discussion is given in terms of velocity fields of fluid flows (a fluid is a liquid or
a gas) because they are easy to visualize. However, Green’s Theorem applies to any vector
field, independent of any particular interpretation of the field, provided the assumptions of
the theorem are satisfied. We introduce two new ideas for Green’s Theorem: circulation
density around an axis perpendicular to the plane and divergence (or Slux density).

Spin Around an Axis: The k-Component of Curl

Suppose that F(x, y) = M(x, y)i + N(x, y)j is the velocity field of a fluid flowing in the
plane and that the first partial derivatives of M and N are continuous at each point of a
region R. Let (x, y) be a point in R and let A be a small rectangle with one corner at %))
that, along with its interior, lies entirely in R. The sides of the rectangle, parallel to the
coordinate axes, have lengths of Ax and Ay. Assume that the components M and N do 1ot




